當前位置:首頁 > 成功案例
華中科技大學王鳴魁團隊于 Advanced Energy Materials 第30期發(fā)表了一項創(chuàng)新的方法,通過使用具有推拉電子結(jié)構(gòu)配置的π共軛分子來調(diào)節(jié)埋藏界面,從而提高三陽離子鈣鈦礦太陽能電池的開路電壓(Voc)。研究人員在鈣鈦礦太陽能電池中使用了氧化錫納米晶作為電子傳輸層,并發(fā)現(xiàn)新型化學材料能夠顯著降低界面能障并鈍化埋藏界面的缺陷。這種方法將Cs0.05(FA 0.85 MA0.15)0.95Pb(I 0.85 Br 0.15)3(帶隙約為1.60 eV)鈣鈦礦太陽能電池的開路電壓提高到1
鈣鈦礦太陽能電池(PSCs)因其輕質(zhì)、可溶液印刷和低成本等優(yōu)勢而受到廣泛關(guān)注。實驗室規(guī)模的PSCs的光電性能得到了顯著提升,這使得研究范圍擴展到了商業(yè)化潛力的熱門探索領(lǐng)域。實現(xiàn)鈣鈦礦太陽能模組的全印刷製備對於規(guī)?;窂蕉砸呀?jīng)迫在眉睫。然而,有機傳輸層的印刷工藝和成膜特性,尤其是Spiro-OMeTAD,一直被忽視。由於墨水流變學與印刷過程不匹配以及LiTFSI-tBP添加劑的不穩(wěn)定性,印刷的Spiro-OMeTAD面臨著非均勻性和孔洞問題。南昌大學陳義旺團隊于2024年Energy & Env
混合鹵化物鈣鈦礦太陽能電池,尤其是鈣鈦礦/晶硅疊層太陽能電池 (PSTs),展現(xiàn)出巨大的潛力,但其長期穩(wěn)定性,尤其是寬帶隙 (WBG) 鈣鈦礦吸收體的穩(wěn)定性,仍然是一個挑戰(zhàn)。WBG 吸收體薄膜的晶體質(zhì)量差和多晶取向?qū)е码x子遷移和相分離,從而降低器件壽命。 來自北京理工大學的陳棋團隊于Science 2024年8月1日第6708期中發(fā)表研究中,著重于成核工程,通過促進 3C 相成核并控制前體組成,以獲得具有優(yōu)異晶體質(zhì)量和紋理的 WBG 吸收體。這種方法有效減少了非輻射復合,增強了對熱降解、離子遷移
鈣鈦礦太陽能電池因其高轉(zhuǎn)換效率而備受關(guān)注,但長期穩(wěn)定性問題一直制約著其商業(yè)化應用。南京航空航天大學納米科學研究所郭萬林團隊于Science 七月號發(fā)表 利用氣相氟化物處理實現(xiàn)的規(guī)?;€(wěn)定方法,成功制備了效率為18.1%的大面積(228平方厘米)鈣鈦礦太陽能模塊,加速老化測試顯示其T80壽命(效率保持80%的時間)高達 43,000 ± 9000小時,相當于近6年的連續(xù)運行時間。這種方法通過在鈣鈦礦表面形成均勻的氟化物鈍化層,有效抑制了缺陷形成和離子擴散,顯著提高了模塊的穩(wěn)定性和性能
鈣鈦礦太陽能電池(PSC)因其出色的光電轉(zhuǎn)換效率、低廉的生產(chǎn)成本以及簡便的制造工藝,近年來成為光伏技術(shù)研究的熱門方向。鈣鈦礦材料具有優(yōu)異的光吸收特性和可調(diào)節(jié)的能帶結(jié)構(gòu),使其在光伏領(lǐng)域展示出巨大潛力。傳統(tǒng)的PSC多采用金屬電極(如金、銀等),雖然這些金屬電極能夠提供良好的導電性,但其高昂的成本和復雜的制備工藝限制了大規(guī)模應用。 為了降低生產(chǎn)成本并提升器件的柔性可加工性,研究人員逐漸將目光轉(zhuǎn)向碳材料電極。碳電極不僅價格低廉、資源豐富,而且在高溫和濕度等惡劣環(huán)境下表現(xiàn)出更好的穩(wěn)定性。此外,碳材料的多樣
近年來, 鈣鈦礦太陽能電池(PSC) 因其光電轉(zhuǎn)換效率和低成本, 迅速成為下一代太陽能電池技術(shù)的研究熱點。 然而, 鈣鈦礦材料本身存在的界面缺陷、 載流子復合以及環(huán)境穩(wěn)定性等問題, 一直是阻礙鈣鈦礦太陽能電池走向?qū)嵱没闹饕系K。為了解決這些問題, 科學家們一直在努力尋找新方法, 其中, 改善器件的界面, 減少非輻射復合損失, 提升電池的穩(wěn)定性和效率, 成為了一個重要的研究方向。 鈣鈦礦太陽能電池的結(jié)構(gòu)主要分為兩種: 正式結(jié)構(gòu) (n-i-p 結(jié)構(gòu)) 和反式結(jié)構(gòu) (p-i-n 結(jié)構(gòu)), 兩種結(jié)構(gòu)在